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We present our investigation of SU(2) gauge theory with 8 flavours, and SU(3) gauge theory with
12 flavours. For the SU(2) case, at strong bare coupling, β . 1.45, the distribution of the lowest
eigenvalue of the Dirac operator can be described by chiral random matrix theory for the Gaussian
symplectic ensemble. Our preliminary result indicates that the chiral phase transition in this
theory is of bulk nature. For the SU(3) theory, we use high-precision lattice data to perform the
step-scaling study of the coupling, gGF , in the Gradient Flow scheme. We examine carefully the
reliability of the continuum extrapolation in the analysis, and conclude that the scaling behaviour
of this SU(3) theory is not governed by possible infrared conformality at g2
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1. Introduction

The search for infrared (IR) conformality in various gauge theories has recently been a popular
subject in Lattice Field Theory [1, 2]. Results of such research activities can lead to useful infor-
mation for constructing composite Higgs, or walking technicolour (WTC), models. These models
contain dynamical electroweak symmetry breaking, and have been shown to be compatible with
experiments at the LHC [3, 4]. Given a gauge group and a representation of the fermions, it is es-
sential to determine the smallest number of flavours, Ncr

f , where the theory can contain an infrared
fixed point (IRFP). The value of Ncr

f is often referred to as the lower end of the conformal window
for a family of theories. A viable WTC model can be obtained with the number of flavours just
below Ncr

f , such that the infrared (IR) nearly scale-invariant behaviour of the theory can produce a
state that is parametrically light [5, 6].

In lattice determination of Ncr
f , the need for accurate numerical calculations results from the

challenge in distinguishing between IR conformality and slow-running behaviour in theories near
the lower end of the conformal window. One example is the 12-flavour SU(3) gauge theory that
has been studied by may groups. the majority concluded that the theory is IR conformal. Amongst
these investigations, one popular strategy is the step-scaling method for computing the running
coupling. This method was implemented using the Schrödinger Functional (SF) scheme [7] and
the Twisted Polyakov Loop (TPL) scheme [8, 9], with a variation of it carried out for the Gradient
Flow (GF) scheme [10]. All these previous studies lead to evidence for IR scale-invariance. Nev-
ertheless, the smallness of the β−function in this theory has to be noted. Two-loop perturbation
theory predicts at most 6% change of the renomalised coupling between the Gaussian ultraviolet
(UV) and the possible strongly-coupled IR fixed points at doubling the length scale. Therefore,
to make any statistically-meaningful statement regarding the running behaviour, it is desirable to
have results with subpercentage-level error. Such precision was not achieved in the previous works,
leaving room to improve the calculations. In this article we present our result of the step-scaling
study for the GF-scheme coupling in this theory. We obtain the renormalised coupling at . 0.5%
statistical error, and use two discretisations which allow us to check the reliability of the continuum
extrapolation.

In this presentation, we also show preliminary results from our investigation of the chiral
phase transition in SU(2) gauge theory with 8 flavours. As pointed out in Ref. [11], the 6-flavour
SU(2) gauge theory can be confining. This makes the study of the 8-flavour theory interesting
for determining Ncr

f for the case of the SU(2) gauge group. This theory may be IR conformal
or confining with a very small β−function as well. There exist relatively few results concerning
its IR behaviour [12, 13], and our investigation can lead to further information in this regard. In
particular, we compute the distribution of the lowest eigenvalue of the Dirac operator, and compare
with the prediction from the Random Matrix Theory (RMT). This method can be used to extract
the infinite-volume chiral condensate from finite-volume lattice data, and there is no contamination
from the power divergences. Therefore it leads to reliable results. In addition to its application in
QCD, this approach has also been adopted for lattice computations for beyond the standard model
physics in Ref. [14]. Using this strategy, we find the existence of the chirally broken phase in
SU(2) gauge theory with 8 flavours. Our preliminary results show that the chiral phase transition
is of bulk nature.
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2. Random Matrix Theory and SU(2) gauge theory with eight flavours

We use the plaquette gauge action and unimproved staggered fermions in the simulation. The
lattice volumes, V̂ = T̂ × L̂3, are T̂ = L̂ = 8, 12 and 16. The fermion masses are m f = 0.005, 0.010
and 0.015. We study the bulk phase structure of this system by computing the chiral condensate.
Investigation of the plaquette and Polyakov loop of the same system was reported in [15]. We use
chiral RMT to extract the chiral condensate from our data. The RMT provides a reliable procedure
which is free from power divergences and the finite volume effect, if the system is in the ε-regime.

The dynamical variables for the RMT is the eigenvalues of an N×N matrix, where N should
be taken N→ ∞. After suitable rescaling, the eigenvalues ζi follow the distribution:

ρ
(β )
N (ζ1, . . . ,ζN ; µ1, . . . ,µN f ) =C

N

∏
i=1

(
ζ

β (ν+1)−1
i e−β

ζ 2
i

8N

N f

∏
a=1

(ζi +µ
2
a )

)
N

∏
i> j
|ζ 2

i −ζ
2
j |β , (2.1)

where N is the size of the matrix, N f is the number of flavours, µa are mass parameters, ν is
the topological charge, and C is the overall normalisation. The Dyson index β is 4 for staggered
fermions in the SU(2) fundamental representation [16]. As pointed out in [17], the corresponding
number of flavours for RMT is different from that for the lattice simulation Nlat.

f :

N f = 2 · 1
4
·Nlat.

f = 4, (2.2)

where the factor 2 comes form the 2-fold degeneracy due to pseudo reality of the SU(2) gauge
group, and 1/4 is from the taste breaking of staggered fermion.

In this work, we use the distribution of the lowest eigenvalue. The lowest eigenvalue, λ1, of the
massless Dirac operator computed on the lattice should follow the same distribution, after rescaling
with the chiral condensate Σ, as predicted by the RMT:

pRMT
1 (ζ1; µ)

∣∣∣
ζ1=λ1V Σ,µ=m f V Σ

=
1

V Σ
platt.

1 (λ1;m f ), (2.3)

where V and m f are the 4-volume and the fermion mass in our lattice simulations. Equation (2.3)
can be used to determine Σ, given the predicted pRMT

1 (ζ1,µ) and the measured platt
1 (λ1;m f ). Non-

applicability of the RMT for extracting the condensate means the restoration of chiral symmetry.
The analytic expression of pRMT

1 (ζ1,µ) can be complicated. In fact, the available analytic
result for the Gaussian symplectic ensemble is only applicable to cases of fractional topological
charges [18]. For this reason, we use the Hybrid Monte Carlo (HMC) method to obtain the distri-
bution with ζi treated as the dynamical variables in Eq. (2.1). We find that N = 400 is large enough,
such that our results do not to show significant N−dependence. Distributions with various values
of µ from 0.0 to 100.0 are obtained by the HMC strategy, and then interpolated to µ = m fV Σ.

Two typical examples of the fits at ν = 0 are shown in Fig. 1. The bad fit (right panel, β =

1.475) gives a very small value of Σ, indicating the restoration of chiral symmetry1. According to
the previous study of this system [15], the theory at β = 1.475 is in the week-coupling phase, while
at β = 1.3 it is in the strong-coupling phase.

1We also observed that N f = 8 and N f = 16 RMT have a tendency to give poorer fitting, which is consistent with
the taste breaking. Our data does not show clustering of the eigenvalues for the taste symmetry.
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Figure 1: Examples of good fit (left) and bad fit (right) of the chiral condensate Σ by using the integrated
distribution of lowest eigenvalue at ν = 0. The red lines are from N f = 4 RMT, and the blue crosses are the
lattice data, with the eigenvalue, λ1, rescaled to ζ1 =V Σλ1 using the value of Σ shown in the plot.

Figure 2 displays plots of Σ against β . All the panels show that the chiral condensate vanishes
for β & 1.45, and most of the fit results with small Σ come with poor χ2/d.o.f (thin symbols). The
location of this chiral phase transition is observed to have almost no volume (upper-left panel) and
fermion-mass (other panels) dependence. This implies that the transition is of bulk nature, and the
phase connecting to the weak-coupling continuum limit is the symmetric phase2. We are currently
generating lattice data at larger volumes to further check the validity of this scenario. More detailed
analysis of systematic errors, such as the effect of the taste breaking, is also needed.

3. The Yang-Mills gradient flow and SU(3) gauge theory with twelve flavours

For the study of SU(3) gauge theory with 12 flavours, we adopt the step-scaling method to
investigate the renormalised running coupling, gGF, in the Gradient Flow (GF) scheme [19, 20].
In this work we use two discretisations, namely the clover and the plaquette, for extracting this
coupling. This allows us to examine the reliability of our results in the continuum limit. To ensure
that we only have one length scale for probing the theory, it is necessary to fix the ratio cτ =

√
8t/L,

where L is the lattice size and t is the flow time. We implement the colour-twisted boundary
condition, and perform the simulations at vanishing fermion mass. The work presented here has
been published in Ref. [21], which we refer to for more details and unexplained notation. Our goal
is to compute, in the continuum limit,

rσ (L)≡
g2

GF(2L)
g2

GF(L)
, (3.1)

where L is interpreted as the renormalisation scale. To proceed, we first specify a value, u, and tune
the bare couplings on the L̂ ≡ L/a = 8,10,12 lattices, such that the renormalised couplings, ḡ2

latt,
extracted on these lattices all match this value. This u is interpreted as the continuum coupling, g2

GF,
renormalised at L. The details of this tuning procedure is explained in Refs. [8, 21]. We then use

2Note that the continuum 8-flavour SU(2) theory is described by the RMT for the Gaussian orthogonal ensem-
ble [16], and we are aware that this may complicate the interpretation of our results.
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Figure 2: Chiral condensate Σ, extracted in the ν = 0 sector, versus the bare coupling β . The upper left panel
is with fermion mass m f = 0.010 and several lattice volumes. The other plots are at fixed lattice volume with
several fermion mass. Thin symbols indicate poor fitting of Σ with χ2/d.o.f≥ 1.
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Figure 3: Continuum extrapolation for the step-scaling function for input u = 6.0 at cτ = 0.375 and 0.45.

the bare couplings obtained above to determine the lattice step-scaling functions, Σ(u,a), which
are simply ḡ2

latt computed on the corresponding lattices 2L̂ = 16,20,24. This allows us to perform
the linear continuum extrapolation using the ansätz a’la Symanzik, Σ(u,a) = σ(u)+A(a/L)2. The
ratio, rσ , defined in Eq. (3.1) can then be expressed as rσ (u) = σ(u)/u.

Figure 3 shows the continuum extrapolation of the step-scaling function using the functional
form linear in (a/L)2, at cτ = 0.375 and 0.45, in the strong-coupling regime (input g2

GF = 6). These
plots clearly demonstrate that one has to be careful when performing this extrapolation. As can be
seen for the case of cτ = 0.375, the extrapolations are mild and smooth. On the other hand, the two
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Figure 4: Left: Results of rσ plotted against input g2
GF(L) at cτ = 0.5. Right: Plot of γ against g2

ref.

discretisations do not lead to compatible result in the continuum limit, indicating that the effects of
the lattice artefacts are significant. The situation is improved at increasing cτ . In this work, we find
that the continuum extrapolation is under control at cτ ≥ 0.45.

Results of the ratio rσ for cτ = 0.5 are displayed in the left panel Fig. 4. From this plot,
we observe that at g2

GF & 5, the GF-scheme coupling runs significantly slower than the two-loop
perturbative prediction. At input g2

GF(L) = 5.8, rσ is almost consistent with unity. However, one
has to be cautious in using this result to indicate the existence of an IRFP in this theory. In Ref. [21],
we argue that the continuum extrapolation of the lattice data for the coupling constant near an IRFP
can be a subtle issue, and it is desirable to perform a finite-size scaling test. This test involves fitting
the lattice numerical results for the (cutoff-dependent) renormalised coupling, ḡ2

latt(g
2
0, L̂ = L/a), at

various values of L̂ to the formula

ḡ2
latt(g

2
0, L̂) = g2

l (gref)+
[
g2

ref−g2
l (gref)

]( L̂ref

L̂

)γ(gref)

, (3.2)

where gl and γ are free parameters, g0 is the bare coupling, gref = ḡlatt(g2
0, L̂ = L̂ref = 8). This

formula is derived from the “locally linearised” β−function. This linearisation is valid (away from
the asymptotic-freedom limit) because the β−function is small. We implement the scaling test
using Eq. (3.2) and scanning through many values of g0. At each choice of g0 (hence gref since
we fix L̂ = 8), we perform a fit. When the bare coupling is tuned such that the theory is in the
vicinity of the possible IRFP, gl and γ will approach g∗ (the location of the fixed point) and γ∗
(the slope of the β−function at the zero in the strong-coupling regime). That is, the signal for the
existence of IR conformality should be the plateaus in the plots of gl and γ against gref. In addition,
scale invariance should ensure that results from different discretisations agree. The outcome of this
analysis is shown in the right panel of Fig. 4. It is clear that our data do not indicate the existence
of an IRFP in the regime where our studies are carried out.

4. Conclusion and outlook

In this talk, we present results from our lattice investigations for the IR behaviour of SU(2)
gauge theory with 8 flavours, and SU(3) with 12 flavours. For the SU(2) case, our preliminary
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finding is that there exists a chirally broken phase that can be well described by the RMT of the
Gaussian symplectic ensemble. We find evidence that the relevant chiral phase transition can be
of bulk nature, and the theory in the continuum limit may be chirally symmetric. Presently we are
performing simulations at larger volumes to obtain further information regarding this transition. As
for the SU(3) theory, our study of the GF-scheme coupling shows that the behaviour theory is not
governed by possible IR conformality at g2

GF . 6.
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